skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chen, Fengjuan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Supported bimetallic alloy nanoparticles are of great interest in various catalytic applications due to the synergistic effects between different metals for improved catalytic performance. However, it still remains a challenge to efficiently synthesize atomically mixed alloy nanoparticles with uniform dispersion onto a desired substrate. Here, in situ, rapid synthesis of atomically mixed bimetallic nanoparticles well‐dispersed on a conductive carbon network via a 1 s high‐temperature pulse (HTP, ≈1550 K, duration 1 s, the rate of 104K s−1) is reported. The high temperature facilitates the total (atomic) mixing of different metals, while the rapid quenching ensures the uniform dispersion of nanoparticles with fine features such as twin boundaries and stacking faults, which are potentially beneficial to their catalytic performance. By varying the ratio of the precursor salts and parameters in the HTP process, the composition, size, and morphology of the resultant nanoparticles can easily be tuned. Moreover, the synthesized bimetallic (PdNi) nanoparticles demonstrate excellent electrocatalytic performance for the hydrogen evolution reaction and hydrogen peroxide electrooxidation. This work provides a general strategy for a facile and rapid synthesis of bimetallic nanoparticles directly from their salts for a range of emerging applications. 
    more » « less